Modeling and Forecasting Volatility in Indian Capital Markets

نویسنده

  • Ajay Pandey
چکیده

Various volatility estimators and models have been proposed in the literature to measure volatility of asset returns. In this paper, we compare empirical performance of various unconditional volatility estimators and conditional volatility models (GARCH and EGARCH) using time-series data of S&PCNX Nifty, a value-weighted index of 50 stocks traded on the National Stock Exchange (NSE), Mumbai. The estimates computed by various estimators and conditional volatility models over nonoverlapping one-day, five-day and one-month periods are compared with the “realized volatility” measured over the same period. We use three years’ (1999-2001) high-frequency data set of fiveminute returns to construct measures of realized volatility. In order to test the ability of the estimators and models to forecast volatility, we compare the estimates of unconditional estimators with the realized volatility measured in the next period of same length. For conditional volatility models, the forecasts for the same periods are obtained by estimating models from the time-series prior to the forecast period. Our results indicate that while conditional volatility models provide less biased estimates, extreme-value estimators are more efficient estimators of realized volatility. As far as forecasting ability of models and estimators is concerned, conditional volatility models fare extremely poorly in forecasting five-day (weekly) or monthly realized volatility. In contrast, extremevalue estimators, other than the Parkinson estimator, perform relatively well in forecasting volatility over these horizons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index

Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility

The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...

متن کامل

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003